oMatKo 2019 SM52
NOMAD 2019 SM52
Konferencja - facebook





KPM_01
paypal

przeszukaj serwisSZUKAJ W SERWISIE

Smoki fraktalne

Na temat fraktali pisaliśmy już np. w 47. numerze „Świata Matematyki”. Tworzyliśmy tam fraktale Benoita Mandelbrota i Gastona Julii w środowisku programistycznym Akademii Khana, dostępnym na stronie pl.khanacademy.org.

Fraktal to obiekt samopodobny (fragmenty fraktala są podobne do całości) albo „nieskończenie złożony” (posiada coraz bardziej złożone detale w dowolnie wielkim powiększeniu). Ze względu na olbrzymią różnorodność fraktali matematycy unikają ścisłej definicji. Fraktal to zbiór, który posiada (niekoniecznie wszystkie) charakterystyki: ma nietrywialną strukturę w każdej skali; struktura ta nie daje się łatwo opisać w języku tradycyjnej geometrii euklidesowej; jest samopodobny, jeśli nie w sensie dokładnym, to przybliżonym lub stochastycznym; jego wymiar Hausdorffa jest większy niż jego wymiar topologiczny; ma względnie prostą definicję rekurencyjną; ma naturalny (poszarpany, kłębiasty itp.) wygląd.

Tym razem czeka nas ręczna robota. Smoki można tworzyć także na monitorze komputera korzystając np. z języka programowania LOGO, który został przedstawiony w „Świecie Matematyki” (prawie w każdym) w numerach od 7. do 33.

Zapraszamy do tworzenia groźnych smoków z... papieru, które mogą nam towarzyszyć gdziekolwiek w domu.

>>powrót





OMatKo
PARTNERZY
alter edukacja
Test IQ
oferty pracy nauczyciel
Piatnik
spinor's


©2004 made and hosted by mediacom