Proste rozwiązania

**Zadanie 1.** Znajdź po pięć par liczb naturalnych spełniających równania:

a) \( x^2 - 2y^2 = 1 \)  
b) \( x^2 - 3y^2 = 1 \)  
c) \( x^2 - 5y^2 = 1 \)

**Rozwiązanie**

a) Jednym z rozwiązań jest para \((x; y) = (3; 2)\)

Drugie rozwiązanie znajdziemy podnosząc wyrażenie \((3 - 2\sqrt{2})\) do kwadratu

\[
(3 - 2\sqrt{2})^2 = 9 - 12\sqrt{2} + 8 = 17 - 12\sqrt{2}
\]

Następnym rozwiązaniem jest \((x; y) = (17; 12)\)

\[
(17 - 12\sqrt{2}) \cdot (3 - 2\sqrt{2}) = 51 - 34\sqrt{2} - 36\sqrt{2} + 48 = 99 - 70\sqrt{2}
\]

Trzecią parą jest \((x; y) = (99; 70)\)

\[
(99 - 70\sqrt{2}) \cdot (3 - 2\sqrt{2}) = 297 - 198\sqrt{2} - 210\sqrt{2} + 280 = 577 - 408\sqrt{2}
\]

Czwarta para to \((x; y) = (577; 408)\)

\[
(577 - 408\sqrt{2}) \cdot (3 - 2\sqrt{2}) = 1731 - 1154\sqrt{2} - 1224\sqrt{2} + 1632 = 3363 - 2378\sqrt{2}
\]

Piąta para to \((x; y) = (3363; 2378)\)

b) Jednym z rozwiązań jest para \((x; y) = (2; 1)\)

Drugie rozwiązanie znajdziemy podnosząc wyrażenie \((2 - \sqrt{3})\) do kwadratu

\[
(2 - \sqrt{3})^2 = 4 - 4\sqrt{3} + 3 = 7 - 4\sqrt{3}
\]

Następnym rozwiązaniem jest \((x; y) = (7; 4)\)

\[
(7 - 4\sqrt{3}) \cdot (2 - \sqrt{3}) = 14 - 7\sqrt{3} - 8\sqrt{3} + 12 = 26 - 15\sqrt{3}
\]

Trzecią parą jest \((x; y) = (26; 15)\)

\[
(26 - 15\sqrt{3}) \cdot (2 - \sqrt{3}) = 52 - 26\sqrt{3} - 30\sqrt{3} + 45 = 97 - 56\sqrt{3}
\]

Czwarta para to \((x; y) = (97; 56)\)

\[
(97 - 56\sqrt{3}) \cdot (2 - \sqrt{3}) = 194 - 97\sqrt{3} - 112\sqrt{3} + 168 = 362 - 209\sqrt{3}
\]

Piąta para to \((x; y) = (362; 209)\)
c) Jednym z rozwiązań jest para \((x; y) = (9; 4)\)

Drugi rozwiązań znajdziemy podnosząc wyrażenie \((9 - 4\sqrt{5})\) do kwadratu

\[
(9 - 4\sqrt{5})^2 = 81 - 72\sqrt{5} + 80 = 161 - 72\sqrt{5}
\]

Następnym rozwiązaniem jest \((x; y) = (161; 72)\)

\[
(161 - 72\sqrt{5}) \cdot (9 - 4\sqrt{5}) = 1449 - 644\sqrt{5} - 648\sqrt{5} + 1440 = 2889 - 1292\sqrt{5}
\]

Trzecią parą jest \((x; y) = (2889; 72)\)

\[
(2889 - 1292\sqrt{5}) \cdot (9 - 4\sqrt{5}) = 1449 - 644\sqrt{5} - 648\sqrt{5} + 1440 = 2889 - 1292\sqrt{5}
\]

Czwartą parą jest \((x; y) = (51841; 23184)\)

\[
(51841 - 23184\sqrt{5}) \cdot (9 - 4\sqrt{5}) = 26001 - 11556\sqrt{5} - 11628\sqrt{5} + 25840 = 51841 - 23184\sqrt{5}
\]

Piąta para to \((x; y) = (930249; 416020)\)

Zadanie 2. Znajdź rozwiązanie w liczbach naturalnych następujących równań Pella:

a) \(x^2 - 6y^2 = 1\) b) \(x^2 - 7y^2 = 1\) c) \(x^2 - 8y^2 = 1\) d) \(x^2 + 61y^2 = 1\) e) \(x^2 - 67y^2 = 1\)

Rozwiązanie

a) \(x^2 - 6y^2 = 1\)

Jedną z trójek będących rozwiązaniem równania \(x^2 - 6y^2 = k\) jest \((3; 1; 3)\). Drugą trójkę zadamy algebraicznie \((m; 1; m^2 - 6)\). Wówczas

\[
x_1 = 3m + 6; \quad y_1 = 3 + m; \quad k_1 = 3(m^2 - 6)
\]

Mamy wówczas

\[
\left(\frac{3m + 6}{3}\right)^2 - 6 \left(\frac{3 + m}{3}\right) = \frac{m^2 - 6}{3}
\]

Dla m=3 \(\frac{m^2 - 6}{3} = 1\)

\[
(x_1; y_1; k_1) = (5; 2; 1)
\]

Równanie to spełnia para \((x; y) = (5; 2)\)

b) \(x^2 - 7y^2 = 1\)
Jedną z trójką będących rozwiązaniem równania \( x^2 - 7y^2 = k \) jest (3; 1; 2). Drugą trójkę zadamy algebraicznie \((m; 1; m^2 - 7)\). Wówczas

\[
x_1 = 3m + 7; \quad y_1 = 3 + m; \quad k_1 = 2(m^2 - 7)
\]

Mamy wówczas

\[
\left(\frac{3m + 7}{2}\right)^2 - 7 \left(\frac{3 + m}{2}\right)^2 = \frac{m^2 - 7}{2}
\]

Dla \( m=1 \) \( \frac{m^2-7}{2} = -3 \)

Dla \( m=3 \) \( \frac{m^2-7}{2} = 1 \)

\((x_1; y_1; k_1) = (8; 3; 1)\)

c) \( x^2 - 8y^2 = 1 \)

Jedną z trójką będących rozwiązaniem równania \( x^2 - 8y^2 = k \) jest (3; 1; 1). Czyli rozwiązaniem równania jest para \((x; y) = (3; 1)\)

d) \( x^2 + 61y^2 = 1 \)

Jedną z trójką będących rozwiązaniem równania \( x^2 + 61y^2 = k \) jest (8; 1; 3). Drugą trójkę zadamy algebraicznie \((m; 1; m^2 - 61)\). Wówczas

\[
x_1 = 8m + 61; \quad y_1 = 8 + m; \quad k_1 = 3(m^2 - 61)
\]

Mamy wówczas

\[
\left(\frac{8m + 61}{3}\right)^2 - 61 \left(\frac{8 + m}{3}\right)^2 = \frac{m^2 - 61}{3}
\]

Dla \( m=1 \) \( \frac{m^2-61}{3} = -20 \)

Dla \( m=2 \) \( \frac{m^2-61}{3} = -19 \)

Dla \( m=4 \) \( \frac{m^2-61}{3} = -15 \)

Dla \( m=5 \) \( \frac{m^2-61}{3} = -12 \)

Dla \( m=7 \) \( \frac{m^2-61}{3} = -4 \)

Dla \( m=8 \) \( \frac{m^2-61}{3} = 1 \)

Dla \( m=10 \) \( \frac{m^2-61}{3} = 13 \)
\((x_1; y_1; k_1) = (39; 5; -4)\)

Szukamy następnej trójkę

\[
x_2 = 39m + 305; \ y_2 = 39 + 5m; \ k_2 = -4(m^2 - 61) \\
x_2 = \frac{39m + 305}{4}; \ y_2 = \frac{39 + 5m}{4}; \ k_2 = \frac{m^2 - 61}{4}
\]

Dla \(m=1\) \(\frac{m^2 - 61}{4} = -15\)

Dla \(m=3\) \(\frac{m^2 - 61}{4} = -13\)

Dla \(m=5\) \(\frac{m^2 - 61}{4} = -9\)

Dla \(m=7\) \(\frac{m^2 - 61}{4} = -3\)

Dla \(m=9\) \(\frac{m^2 - 61}{4} = 5\)

\(x_2 = 164; \ y_2 = 21; \ k_2 = -5\)

Wyznaczamy następną trójkę

\[
x_3 = 164m + 1281; \ y_3 = 164 + 21m; \ k_3 = -5(m^2 - 61) \\
x_3 = \frac{164m + 1281}{5}; \ y_3 = \frac{164 + 21m}{5}; \ k_3 = \frac{m^2 - 61}{5}
\]

Dla \(m=1\) \(\frac{m^2 - 61}{5} = -12\)

Dla \(m=4\) \(\frac{m^2 - 61}{5} = -9\)

Dla \(m=6\) \(\frac{m^2 - 61}{5} = -5\)

Dla \(m=9\) \(\frac{m^2 - 61}{5} = 4\)

\(x_3 = 453; \ y_3 = 58; \ k_3 = 5\)

Szukamy następnej trójkę

\[
x_4 = 453m + 3538; \ y_4 = 453 + 58m; \ k_4 = 5(m^2 - 61) \\
x_4 = \frac{453m + 3538}{5}; \ y_4 = \frac{453 + 58m}{5}; \ k_4 = \frac{m^2 - 61}{5}
\]

Dla \(m=1\) \(\frac{m^2 - 61}{5} = -12\)
Dla $m=4$ \[ \frac{m^2-61}{5} = -9 \]
Dla $m=6$ \[ \frac{m^2-61}{5} = -5 \]
Dla $m=9$ \[ \frac{m^2-61}{5} = 4 \]

$x_4 = 1523; \ y_4 = 195; \ k_4 = 4$

Liczymy dalej

\[ x_5 = 1523m + 11895; \ y_5 = 1523 + 195m; \ k_5 = 4(m^2 - 61) \]

\[ x_5 = \frac{1523m + 11895}{4}; \ y_5 = \frac{1523 + 195m}{4}; \ k_5 = \frac{m^2 - 61}{4} \]

Dla $m=1$ \[ \frac{m^2-61}{4} = -15 \]
Dla $m=3$ \[ \frac{m^2-61}{4} = -13 \]
Dla $m=5$ \[ \frac{m^2-61}{4} = -9 \]
Dla $m=7$ \[ \frac{m^2-61}{4} = -3 \]
Dla $m=9$ \[ \frac{m^2-61}{4} = 5 \]

$x_5 = 5639; \ y_5 = 722; \ k_5 = -3$

Liczymy dalej

\[ x_6 = 5639m + 44042; \ y_6 = 5639 + 722m; \ k_6 = -3(m^2 - 61) \]

\[ x_6 = \frac{5639m + 44042}{3}; \ y_6 = \frac{5639 + 722m}{3}; \ k_6 = \frac{(m^2 - 61)}{-3} \]

Dla $m=1$ \[ \frac{(m^2-61)}{-3} = 20 \]
Dla $m=2$ \[ \frac{(m^2-61)}{-3} = 19 \]
Dla $m=4$ \[ \frac{(m^2-61)}{-3} = 15 \]
Dla $m=5$ \[ \frac{(m^2-61)}{-3} = 12 \]
Dla $m=7$ \[ \frac{(m^2-61)}{-3} = 4 \]
Dla m=8 \( m^2 - 61 \) = -1

Dla m=10 \( m^2 - 61 \) = -13

\[ x_6 = 29718; \ y_6 = 3805; \ k_6 = -1 \]

Zastosujmy teraz sztuczkę polegającą na tym, że otrzymaną trójkę pomnożymy przez siebie. Wówczas

\[ x = 29718^2 + 61 \cdot 3805^2 = 1766319049 \]
\[ y = 2 \cdot 29718 \cdot 3805 = 226153980 \]
\[ k = 1 \]

Czyli rozwiązaniem równania jest para \((x; y) = (1766319049; 226153980)\)

e) \( x^2 - 67y^2 = 1 \)

Niech trójką wyjściową będzie trójka \((x_0; y_0; k_0) = (9; 1; 14)\)

Wówczas \((x_1; y_1; k_1) = (9m + 67; 9 + m; 14(m^2 - 67)), \) wiec

\[ (x_1; y_1; k_1) = \left( \frac{9m + 67}{14}; \frac{9 + m}{14}; \frac{m^2 - 67}{14} \right) \]

Dla m=5 \( \frac{m^2 - 67}{14} = -3 \)

Dla m=19 \( \frac{m^2 - 67}{14} = 21 \)

W takim razie

\[ (x_1; y_1; k_1) = (8; 1; -3) \]

Generujemy drugą trójkę

\( (x_2; y_2; k_2) = (8m + 67; 8 + m; -3(m^2 - 67)) \)

Czyli

\[ (x_2; y_2; k_2) = \left( \frac{8m + 67}{3}; \frac{8 + m}{3}; \frac{m^2 - 67}{-3} \right) \]

Dla m=1 \( \frac{m^2 - 67}{-3} = 22 \)

Dla m=4 \( \frac{m^2 - 67}{-3} = 17 \)
Dla m=7 \[ \frac{m^2 - 67}{3} = 6 \]

Dla m=10 \[ \frac{m^2 - 67}{3} = -11 \]

\[(x_2; y_2; k_2) = (41; 5; 6)\]

Generujemy następną trójkę

\[(x_3; y_3; k_3) = (41m + 335; 41 + 5m; 6(m^2 - 67))\]

Czyli

\[(x_3; y_3; k_3) = \left( \frac{41m + 335}{6}; \frac{41 + 5m}{6}; \frac{m^2 - 67}{6} \right)\]

Dla m=5 \[ \frac{m^2 - 67}{6} = -7 \]

Dla m=11 \[ \frac{m^2 - 67}{6} = 9 \]

\[(x_3; y_3; k_3) = (90; 11; -7)\]

Nadal generujemy

\[(x_4; y_4; k_4) = (90m + 737; 90 + 11m; -7(m^2 - 67))\]

Czyli

\[(x_4; y_4; k_4) = \left( \frac{90m + 737}{7}; \frac{90 + 11m}{7}; \frac{m^2 - 67}{-7} \right)\]

Dla m=2 \[ \frac{m^2 - 67}{-7} = 9 \]

Dla m=9 \[ \frac{m^2 - 67}{-7} = -2 \]

Dla m=16 \[ \frac{m^2 - 67}{-7} = -27 \]

\[(x_4; y_4; k_4) = (221; 27; -2)\]

Generujemy dalej

\[(x_5; y_5; k_5) = (221m + 1809; 221 + 27m; -2(m^2 - 67))\]

Czyli

\[(x_5; y_5; k_5) = \left( \frac{221m + 1809}{2}; \frac{221 + 27m}{2}; \frac{m^2 - 67}{-2} \right)\]
Dla $m=1$ \( \frac{m^2 - 67}{2} = 33 \)

Dla $m=3$ \( \frac{m^2 - 67}{2} = 29 \)

Dla $m=5$ \( \frac{m^2 - 67}{2} = 21 \)

Dla $m=7$ \( \frac{m^2 - 67}{2} = 9 \)

Dla $m=9$ \( \frac{m^2 - 67}{2} = -7 \)

Dla $m=11$ \( \frac{m^2 - 67}{2} = -27 \)

\[ (x_5; y_5; k_5) = (1899; 232; -7) \]

Generujemy dalej

\[ (x_6; y_6; k_6) = \left( \frac{1899m + 15544}{7}; \frac{1899 + 232m}{7}; \frac{m^2 - 67}{-7} \right) \]

Dla $m=5$ \( \frac{m^2 - 67}{7} = 6 \)

Dla $m=12$ \( \frac{m^2 - 67}{7} = -11 \)

\[ (x_6; y_6; k_6) = (3577; 437; 6) \]

Generujemy następną trójkę

\[ (x_7; y_7; k_7) = \left( \frac{3577m + 29279}{6}; \frac{3577 + 437m}{6}; \frac{m^2 - 67}{6} \right) \]

Dla $m=1$ \( \frac{m^2 - 67}{6} = -11 \)

Dla $m=7$ \( \frac{m^2 - 67}{6} = -3 \)

Dla $m=13$ \( \frac{m^2 - 67}{6} = 17 \)

\[ (x_7; y_7; k_7) = (9053; 1106; -3) \]

Generujemy dalej

\[ (x_8; y_8; k_8) = \left( \frac{9053m + 74102}{6}; \frac{9053 + 1106m}{6}; \frac{-3(m^2 - 67)}{6} \right) \]
\[(x_8; y_8; k_8) = \left( \frac{9053m + 74102}{3}; \frac{9053 + 1106m}{3}; \frac{m^2 - 67}{3} \right)\]

Dla m=2 \(\frac{m^2 - 67}{3} = 21\)

Dla m=5 \(\frac{m^2 - 67}{3} = 14\)

Dla m=8 \(\frac{m^2 - 67}{3} = 1\)

\[(x_8; y_8; k_8) = (48842; 5967; 1)\]

Rozwiązaniem naszego równania jest para

\[(x; y) = (48842; 5967)\]